
6/15/09 

1 

Advanced Crash Course in
Supercomputing: Parallelism

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004-2009 Rebecca Hartman-Baker. Reproduction permitted for
non-commercial, educational use only.

Outline

I.   Parallelism

II.   Supercomputer Architecture

III.   Basic MPI

IV.  MPI Collectives

V.  Debugging and Performance Evaluation

6/15/09 

2 

I. PARALLELISM

Parallel Lines by Blondie. Source:
http://xponentialmusic.org/blogs/885mmmm/2007/10/09/403-blondie-hits-1-with-heart-of-glass/

I. Parallelism

•  Concepts of parallelization

•  Serial vs. parallel

•  Parallelization strategies

6/15/09 

3 

Parallelization Concepts

•  When performing task, some subtasks depend on one
another, while others do not

•  Example: Preparing dinner
–  Salad prep independent of lasagna baking

–  Lasagna must be assembled before baking

•  Likewise, in solving scientific problems, some tasks
independent of one another

Serial vs. Parallel

•  Serial: tasks must be performed in sequence

•  Parallel: tasks can be performed independently in any order

6/15/09 

4 

Serial vs. Parallel: Example

•  Example: Preparing dinner

–  Serial tasks: making sauce,
assembling lasagna, baking
lasagna; washing lettuce,
cutting vegetables, assembling
salad

–  Parallel tasks: making lasagna,
making salad, setting table

Serial vs. Parallel: Example

•  Could have several chefs, each
performing one parallel task

•  This is concept behind parallel
computing

6/15/09 

5 

Parallel Algorithm Design: PCAM

•  Partition: Decompose problem into fine-grained
tasks to maximize potential parallelism

•  Communication: Determine communication pattern
among tasks

•  Agglomeration: Combine into coarser-grained
tasks, if necessary, to reduce communication
requirements or other costs

•  Mapping: Assign tasks to processors, subject to
tradeoff between communication cost and
concurrency

(taken from Heath: Parallel Numerical Algorithms)

Discussion: Jigsaw Puzzle*

•  Suppose we want to do 5000 piece jigsaw puzzle

•  Time for one person to
 complete puzzle: n hours

•  How can we decrease walltime
 to completion?

* Thanks to Henry Neeman

6/15/09 

6 

Discussion: Jigsaw Puzzle

•  Add another person at the table

–  Effect on wall time

–  Communication

–  Resource contention

•  Add p people at the table

–  Effect on wall time

–  Communication

–  Resource contention

Discussion: Jigsaw Puzzle

•  What about: p people, p tables,
5000/p pieces each?

•  What about: one person works
on river, one works on sky, one
works on mountain, etc.?

6/15/09 

7 

II. ARCHITECTURE

Image: Louvre Abu Dhabi – Abu Dhabi, UAE, designed by Jean Nouvel, from
http://www.inhabitat.com/2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/

II. Supercomputer Architecture

•  What is a supercomputer?

•  Conceptual overview of architecture

Cray 1
(1976)

IBM Blue
Gene
(2005)

Architecture of IBM Blue
Gene

Cray XT5
(2009)

6/15/09 

8 

What Is a Supercomputer?

•  “The biggest, fastest computer right this minute.” --
Henry Neeman

•  Generally 100-10,000 times more powerful than PC

•  This field of study known as supercomputing, high-
performance computing (HPC), or scientific computing

•  Scientists use really big computers to solve really hard
problems

SMP Architecture

•  Massive memory, shared by multiple processors

•  Any processor can work on any task, no matter its
location in memory

•  Ideal for parallelization of sums, loops, etc.

6/15/09 

9 

Cluster Architecture

•  CPUs on racks, do computations (fast)

•  Communicate through myrinet connections (slow)

•  Want to write programs that divide computations
evenly but minimize communication

State-of-the-Art Architectures

•  Today, hybrid architectures gaining acceptance

•  Multiple {quad, 8, 12}-core nodes, connected to other
nodes by (slow) interconnect

•  Cores in node share memory (like small SMP
machines)

•  Machine appears to follow cluster architecture (with
multi-core nodes rather than single processors)

•  To take advantage of all parallelism, use MPI (cluster)
and OpenMP (SMP) hybrid programming

6/15/09 

10 

III. MPI

MPI also stands for Max Planck Institute for Psycholinguistics. Source: http://www.mpi.nl/WhatWeDo/istitute-pictures/building

III. Basic MPI

•  Introduction to MPI

•  Parallel programming concepts

•  The Six Necessary MPI Commands

•  Example program

6/15/09 

11 

Introduction to MPI

•  Stands for Message Passing Interface

•  Industry standard for parallel programming (200+ page
document)

•  MPI implemented by many vendors; open source
implementations available too

–  ChaMPIon-PRO, IBM, HP, Cray vendor implementations

–  MPICH, LAM-MPI, OpenMPI (open source)

•  MPI function library is used in writing C, C++, or Fortran
programs in HPC

•  MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality
and C++ bindings, but everything learned today applies to
both standards

Parallelization Concepts

•  Two primary programming paradigms:
–  SPMD (single program, multiple data)

–  MPMD (multiple programs, multiple data)

•  MPI can be used for either paradigm

6/15/09 

12 

SPMD vs. MPMD

•  SPMD: Write single program that will perform same
operation on multiple sets of data
–  Multiple chefs baking many lasagnas

–  Rendering different frames of movie

•  MPMD: Write different programs to perform different
operations on multiple sets of data
–  Multiple chefs preparing four-course dinner

–  Rendering different parts of movie frame

•  Can also write hybrid program in which some
processes perform same task

The Six Necessary MPI Commands

•  int MPI_Init(int *argc, char **argv)	

•  int MPI_Finalize(void)	

•  int MPI_Comm_size(MPI_Comm comm, int
*size)	

•  int MPI_Comm_rank(MPI_Comm comm, int
*rank)	

•  int MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)	

•  int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)	

6/15/09 

13 

Initiation and Termination

•  MPI_Init(int *argc, char **argv)
initiates MPI
–  Place in body of code after variable declarations and before

any MPI commands

•  MPI_Finalize(void) shuts down MPI
–  Place near end of code, after last MPI command

Environmental Inquiry

•  MPI_Comm_size(MPI_Comm comm, int
*size)
–  Find out number of processes

–  Allows flexibility in number of processes used in program

•  MPI_Comm_rank(MPI_Comm comm, int
*rank)
–  Find out identifier of current process

–  0 ≤ rank ≤ size-1

6/15/09 

14 

Message Passing: Send

•  MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm)
–  Send message of length count bytes and datatype
datatype contained in buf with tag tag to process
number dest in communicator comm

–  E.g. MPI_Send(&x, 1, MPI_DOUBLE, manager,
me, MPI_COMM_WORLD)	

Message Passing: Receive

•  MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status
*status)	

–  Receive message of length count bytes and datatype
datatype with tag tag in buffer buf from process
number source in communicator comm and record status
status

–  E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source,
source, MPI_COMM_WORLD, &status)	

6/15/09 

15 

Message Passing

•  WARNING! Both standard send and receive functions
are blocking

•  MPI_Recv returns only after receive buffer contains
requested message

•  MPI_Send may or may not block until message
received (usually blocks)

•  Must watch out for deadlock

Deadlocking Example (Always)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
sendto, q, sendto);	

 MPI_Finalize();	

 return 0;	

}	

6/15/09 

16 

Deadlocking Example (Sometimes)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, 	

	
 	
sendto, q, sendto);	

 MPI_Finalize();	

 return 0;	

}	

Deadlocking Example (Safe)

#include <mpi.h>	

#include <stdio.h>	

int main(int argc, char **argv) {	

 int me, np, q, sendto;	

 MPI_Status status;	

 MPI_Init(&argc, &argv);	

 MPI_Comm_size(MPI_COMM_WORLD, &np);	

 MPI_Comm_rank(MPI_COMM_WORLD, &me);	

 if (np%2==1) return 0;	

 if (me%2==1) {sendto = me-1;}	

 else {sendto = me+1;}	

 if (me%2 == 0) {	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

	
 } else {	

 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);	

 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);	

 }	

 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,

sendto);	

 MPI_Finalize();	

 return 0;	

}	

6/15/09 

17 

Explanation: Always Deadlock Example

•  Logically incorrect

•  Deadlock caused by blocking MPI_Recvs

•  All processes wait for corresponding MPI_Sends to
begin, which never happens

Explanation: Sometimes Deadlock Example

•  Logically correct

•  Deadlock could be caused by MPI_Sends competing
for buffer space

•  Unsafe because depends on system resources

•  Solutions:
–  Reorder sends and receives, like safe example, having evens

send first and odds send second
–  Use non-blocking sends and receives or other advanced

functions from MPI library (see MPI standard for details)

6/15/09 

18 

IV. MPI COLLECTIVES
“Collective Farm Harvest Festival” (1937) by Sergei Gerasimov. Source:
http://max.mmlc.northwestern.edu/~mdenner/Drama/visualarts/neorealism/34harvest.html

MPI Collectives

•  Communication involving group of processes

•  Collective operations
–  Broadcast

–  Gather

–  Scatter

–  Reduce

–  All-

–  Barrier

6/15/09 

19 

Broadcast

•  Perhaps one message needs to be sent from manager
to all worker processes

•  Could send individual messages

•  Instead, use broadcast – more efficient, faster

•  int MPI_Bcast(void* buffer, int
count, MPI_Datatype datatype, int
root, MPI_Comm comm)	

Gather

•  All processes need to send same (similar) message to manager

•  Could implement with each process calling MPI_Send(…)
and manager looping through MPI_Recv(…)	

•  Instead, use gather operation – more efficient, faster

•  Messages concatenated in rank order

•  int MPI_Gather(void* sendbuf, int
sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype
recvtype, int root, MPI_Comm comm)	

•  Note: recvcount = number of items received from each
process, not total

6/15/09 

20 

Gather

•  Maybe some processes need to send longer messages
than others

•  Allow varying data count from each process with
MPI_Gatherv(…)	

•  int MPI_Gatherv(void* sendbuf, int
sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int
*displs, MPI_Datatype recvtype, int
root, MPI_Comm comm)

•  recvcounts is array; entry i in displs array
specifies displacement relative to recvbuf[0] at which
to place data from corresponding process number

Scatter

•  Inverse of gather: split message into NP equal pieces, with
ith segment sent to ith process in group

•  int MPI_Scatter(void* sendbuf, int
sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root,
MPI_Comm comm)	

•  Send messages of varying sizes across processes in
group: MPI_Scatterv(…)	

•  int MPI_Scatterv(void* sendbuf, int
*sendcounts, int *displs, MPI_datatype
sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int
root, MPI_Comm comm)	

6/15/09 

21 

Reduce

•  Perhaps we need to do sum of many subsums owned
by all processors

•  Perhaps we need to find maximum value of variable
across all processors

•  Perform global reduce operation across all group
members

•  int MPI_Reduce(void* sendbuf, void*
recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root,
MPI_Comm comm)	

Reduce: Predefined Operations

MPI_Op	
 Meaning Allowed Types
MPI_MAX	
 Maximum Integer, floating point
MPI_MIN	
 Minimum Integer, floating point
MPI_SUM	
 Sum Integer, floating point, complex
MPI_PROD	
 Product Integer, floating point, complex
MPI_LAND	
 Logical and Integer, logical
MPI_BAND	
 Bitwise and Integer, logical
MPI_LOR	
 Logical or Integer, logical
MPI_BOR	
 Bitwise or Integer, logical
MPI_LXOR	
 Logical xor Integer, logical
MPI_BXOR	
 Bitwise xor Integer, logical
MPI_MAXLOC	
Maximum value and location *
MPI_MINLOC	
Minimum value and location *

6/15/09 

22 

Reduce: Operations

•  MPI_MAXLOC and MPI_MINLOC	

–  Returns {max, min} and rank of first process with that value

–  Use with special MPI pair datatype arguments:
•  MPI_FLOAT_INT (float and int)
•  MPI_DOUBLE_INT (double and int)
•  MPI_LONG_INT (long and int)
•  MPI_2INT (pair of int)

–  See MPI standard for more details

•  User-defined operations
–  Use MPI_Op_create(…) to create new operations

–  See MPI standard for more details

All- Operations

•  Sometimes, may want to have result of gather, scatter,
or reduce on all processes

•  Gather operations
–  int MPI_Allgather(void* sendbuf, int
sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype
recvtype, MPI_Comm comm)	

–  int MPI_Allgatherv(void* sendbuf, int
sendcount, MPI_Datatype sendtype, void*
recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm) 	

6/15/09 

23 

All-to-All Scatter/Gather

•  Extension of Allgather in which each process
sends distinct data to each receiver

•  Block j from process i is received by process j into
ith block of recvbuf	

•  int MPI_Alltoall(void* sendbuf, int
sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm
comm)	

•  Also corresponding AlltoAllv function available

All-Reduce

•  Same as MPI_Reduce except result appears on all
processes

•  int MPI_Allreduce(void* sendbuf,
void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)	

6/15/09 

24 

Barrier

•  In algorithm, may need to synchronize processes

•  Barrier blocks until all group members have called it

•  int MPI_Barrier(MPI_Comm comm)	

V. DEBUGGING AND
PERFORMANCE
EVALUATION

Source: http://www.uky.edu/Ag/Entomology/ythfacts/4h/unit1/i&tr.htm

6/15/09 

25 

V. Debugging and Performance Evaluation

•  Common errors in parallel programs

•  Debugging tools

•  Overview of benchmarking and performance
measurements

Common Errors

•  Program hangs

–  Send has no corresponding receive (or vice versa)

–  Send/receive pair do not match in source/recipient or tag

–  Condition you believe should occur does not occur

•  Segmentation fault

–  Trying to access memory you are not allowed to access/
memory you should not have been allowed to access has
been altered (e.g. array index out-of-bounds, uninitialized
pointers, using non-pointer as pointer)

–  Trying to access a memory location in a way that is not
allowed (e.g. overwrite a read-only location)

6/15/09 

26 

Debugging Tools

•  Debugging parallel codes is particularly difficult

•  Problem: figuring out what happens on each node

•  Solutions:
–  Print statements, I/O redirection into files belonging to each

node

–  Debuggers compatible with MPI

Print Statement Debugging Method

•  Each processor dumps print statements to stdout or
into individual output files, e.g. log.0001, log.
0002, etc.

•  Advantage: easy to implement, independent of
platform or available resources

•  Disadvantage: time-consuming, extraneous
information in log files

6/15/09 

27 

MPI-Compatible Debuggers

•  TotalView

–  Commercial product, easy-to-use GUI

–  Installed on production systems such as Crays, probably not
installed on local machines

•  Free debuggers + mpirun

–  Use mpirun command and specify your favorite debugger,
e.g. mpirun -dbg=ddd -np 4 ./myprog

–  This option available with MPICH and most other MPI
implementations

–  Not as “pretty” as TotalView but it gets job done

Benchmarking and Performance

•  Efficiency

•  Scalability

•  Performance modeling

•  Example

6/15/09 

28 

Efficiency

•  How well does parallel program perform compared to
serial program (or parallel program on 1 processor)?

•  E = efficiency, N = # processors, Tp = time for p
processors

€

EN =
T1
NTN

Efficiency

•  Ideally, EN = 1; realistically, EN < 1.

•  Factors influencing efficiency
–  Load balance (evenly distribute work for better efficiency)

–  Concurrency (minimize idle time on all processors)

–  Overhead (minimize work that serial computation would not
do, e.g. communication)

6/15/09 

29 

Scalability: Speedup

•  How well does parallel program take advantage of
additional processors?

•  S = speedup, N = # processors, Tp = time for p
processors

€

SN =
T1
TN

Determining Scalability of Program

•  How to measure scalability
–  Fixed problem size, measure TN for different N’s

–  Increase problem size proportional to N, compare TN

•  Repeat performance runs at least 3 times for each N
(ideally >5 times)

•  Plot on log-log graph; slope of line determines
scalability

6/15/09 

30 

Scalability

1

10

100

1000

1 2 4 8 16 32

W
al

l T
im

e
(m

in
ut

es
)

Number of Processors

Ideal (fixed problem size)
Realistic (fixed problem size)
Ideal (growing problem size)
Realistic (growing problem size)

Performance Evaluation

•  Create performance model

•  Examine parallel algorithm and figure out which parts
fit in each category

•  Perform least-squares fit with scalability data
€

TN = TN
communication + TN

computation + TN
serial

6/15/09 

31 

Benchmarking and Performance: Example

•  Example of real program: three-tier parallel program
from my dissertation

•  The problem: Compute diffusion function
–  Compute f matrices, each matrix and each matrix entry

independent of all others

–  Perform matrix-vector multiply for each matrix and take norm
of result

–  Take weighted average of f results

Example: Schematic Overview of Algorithm

6/15/09 

32 

Example: Categorize Algorithm

Communication Computation Serial (Idle)
Manager: send information
about computation to All

Manager: Initialize

All: Compute matrix
entries using quadrature

Workers: Send matrix
entries to Drivers

Drivers: Compute matrix/
vector multiply and norm

(Worker processes are idle)

Drivers: Send results to
manager

Compute final function
evaluation (All processes
except Manager are idle)

Tim
e

Example: Performance Evaluation

•  N = # processors

•  d = # drivers

•  f = stencil size

•  P(N, f) = max # entries
computed by 1 proc

•  ts = message startup time

•  tquad = avg time to compute one
entry

•  tinit = time spent by manager in
serial

For three-tier algorithm,
€

TN = TN
communication + TN

computation + TN
serial

€

TN = (3N + d −1)ts + P(N, f)tquad + tinit

6/15/09 

33 

Example: Performance Evaluation

•  Using least squares solve, we obtain

€

TN = (3N + d −1) 3.81077 ×10−3 + P(N, f) 10.3311+ 3.91500 sec

Bibliography/Resources: Programming
Concepts and Debugging

•  Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.uiuc.edu/cs554/notes/index.html

•  MPI Deadlock and Suggestions
http://www.ncsa.uiuc.edu/UserInfo/Resources/
Hardware/CommonDoc/MessPass/
MPIDeadlock.html

•  TotalView Tutorial
http://www.llnl.gov/computing/tutorials/totalview/

•  Etnus TotalView page http://www.etnus.com/

6/15/09 

34 

Bibliography/Resources: MPI/ MPI
Collectives

•  Snir, Marc, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra. (1996)
MPI:The Complete Reference. Cambridge, MA: MIT
Press. (also available at
http://www.netlib.org/utk/papers/mpi-book/mpi-
book.html)

•  MPICH Documentation
http://www-unix.mcs.anl.gov/mpi/mpich/

•  C, C++, and FORTRAN bindings for MPI-1.2
http://www.lam-mpi.org/tutorials/bindings/

Bibliography/Resources: MPI/ MPI
Collectives

•  Message Passing Interface (MPI) Tutorial
https://computing.llnl.gov/tutorials/mpi/

•  MPI Standard at MPI Forum
–  MPI 1.1:

http://www.mpi-forum.gov/docs/mpi-11-html/mpi-
report.html#Node0

–  MPI-2:
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.htm#Node0

6/15/09 

35 

Bibliography/Resources: Benchmarking and
Performance

•  Heath, Michael T. (2006) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.uiuc.edu/cs554/notes/index.html

•  Hartman-Baker, Rebecca J. (2005) The Diffusion
Equation Method for Global Optimization and Its
Application to Magnetotelluric Geoprospecting,
Department of Computer Science, University of Illinois
at Urbana-Champaign,
http://www.cs.uiuc.edu/research/techreports.php?
report=UIUCDCS-R-2005-2578

